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Three arguments are given that imply substantial chain folding in crystalline-amorphous polymer 
systems of lamellar morphology. These arguments assume random coil behaviour in the amorphous 
region. (1) The random walk character of the polymer chain portions comprizing the amorphous 
regions topologically constrains the number of crystalline stems that connect covalently with the 
amorphous regions to be small. Quantitative estimates are made and lower bounds on the amount of 
chain folding are given. Estimates of (2) the tightness of loops and (3) the average spatial separation 
between consecutive crystal stems (along a given chain) are made. The results favour substantial 
amounts of adjacent and near-adjacent re-entry. Existing experimental measurements on diblock co- 
polymers consisting of crystallizable and non-crystallizable blocks provide a measure of the random 
walk character of the chains in the amorphous region. It is argued that such systems form lamellar 
structures with large amounts of chain folding in the crystalline regions as a condition of thermo- 
dynamic equilibrium. 

INTRODUCTION 

There are two rival views of the microstructure of poly- 
crystalline polymers of lamellar morphology: the switch- 
board model and the adjacent re-entry model. 

Figures la, lb, and 6 illustrate various aspects of the 
switchboard model. The common feature in these figures 
is that the chains in the amorphous region are random. 
They leave the crystal at some point and re-enter at a point 
which is determined by random walk statistics). The point 
of re-entry is generally thought to occur some distance from 
the exit point. 

Figures 4a, 5a, 5b and 7 illustrate various aspects of adja- 
cent re-entry. The common feature in these figures are the 
tight loops which force adjacent re-entry. 

If we grant the existence of these two rival views, it is 
also necessary for us to allow intermediate situations. Both 
theory and experiment can be used in an attempt to decide 
which situation prevails in real systems. The experimental 
situation probably corresponds to some mix of the two 
extreme models. However, we think that the experimental 
situation approximates the adjacent re-entry model more 
closely than the switchboard model. 

In this work, we shall devote ourselves exclusively to 
the theory of the crystalline-amorphous lamellar complex. 
We shall find that the switchboard model, which is a hypo- 
thesis on how polymers behave at an interface, is incompat- 
ible with the statistics of polymers near interfaces. 

This paper presents three statistical mechanical observa- 
tions on the nature of the crystal-amorphous interface. 

Observation I uses a simple density argument to show 
that the chain folding at an interface is substantial. Quan- 
titative estimates and bounds are given. The meaning of 
random behaviour of polymers near a surface is explored 
and in the process the lattice model in the presence of a 

surface is solved. Also, the Gamblers Ruin problem is shown 
to describe polymer behaviour in homopolymer systems of 
lamellar morphology. 

Observation H shows that loops are generally tight, pro- 
vided there is a surface in the vicinity of the loop. The 
crystalline lamella provides this surface. 

Observation III is an actual quantitative estimate of the 
amount of adjacency. 

The above observations are based on the assumption of 
random coil behaviour in amorphous regions close to inter- 
faces. If extensive orientation is imagined to occur in the 
amorphous regions, then uncertainties are introduced. For 
this reason, it is useful to have experimental support for 
the assumption of unoriented amorphous regions. We shall 
see that amphiphilic diblock copolymers provide such evi- 
dence. Finally, it is pointed out that these amphiphilic dib- 
lock copolymers show chain folding as a condition of 
thermodynamic equilibrium. 

THREE STATISTICAL MECHANICAL OBSERVATIONS 
WHICH FAVOUR CHAIN FOLDING 

Observation L Some chain folding is a topological necessity 
in every lamellar structure 

Consider the crystalline-amorphous complexes displayed 
in Figures la and lb. In both, there is a region of crystal 
which changes abruptly to an amorphous region. In these 
models, each crystal stem leaves the crystal and goes into 
the amorphous region. In the crystalline region, the chains 
are all oriented in the same direction; in the amorphous 
region, each chain consists o f N  a elements which form a 
random walk. Because of the random coil nature of the 
amorphous segments, we shall assume that the thickness of 
the amorphous layer is of the order of N 1/2. In Figure la, 
the random coil portions form tie-chains (bridges) between 
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Figure 1 Figure la displays an amorphous layer consisting of tie- 
chains (bridges). Because the prolongation of the straight crystal- 
line portion through the interlamellar region would result in a inter- 
lamellar density equal to the crystal density, we can see that the 
turning of the chains in the amorphous region results in a density 
which is much higher than the crystalline density. See text for 
quantitative estimates. Figure Ib Ditto, but for loops rather than 
bridges 

adjacent crystal lamellae. In Figure lb ,  the random coil 
portions form loops. 

The existence o f  such structures as depicted in Figures 
la and lb  is impossiblek To see this clearly, we write the 
volume of the amorphous region as: 

V = M 2 N 1 / 2  (1) 

mainder, 1 - f, of the stems do not enter into the amor- 
phous region. The amorphous density in this case becomes: 

P = f N  1/2 (4) 

An estimate of the fraction of folded chains is obtained by 
choosingf = 1/Nla/2. Then the fraction of chain folding for 
the case that l ,~ L (where I is the lamellar thickness and L 
the length of the molecule) is given by: 

1 - f =  (Nla/2 - 1)IN 1/2 (5) 

Thus, in contradistinction to Figure 1, the model of Figure 
2 represents an a priori possibility since it allows the amor- 
phous density to be of a proper magnitude. 

The packing problem is not alleviated by postulating 
adsorbed polymers (polymers not covalently attached to 
the crystal stems) since, for a given degree of crystallinity, 
one must have more chain folding-not less-when adsorbed 
molecules are present (if all the amorphous region consisted 
of adsorbed molecules, the amount of chain folding would 
be 100%). 

The above arguments are forceful because of their ex- 
treme simplicity and because of the strong belief in the 
random walk character of polymer in an amorphous region. 
Nonetheless, legitimate questions can be raised which re- 
quire further discussion. 

The assumption that the amorphous lamellar thickness M 
is proportional to Nla/2 needs to be examined. One would 
expect that M depends on whether kinetic or equilibrium 
factors are dominant during the crystallization process. In- 
deed each of the three equilibrium calculations we shall use 
below give different dependences of M on Na. In the first 
treatment (for a system consisting of bridges only) M "Nla/2, 
in the second treatment (applicable to diblock copolymers) 
M o: N2a/3, while in the third treatment (applicable to homo- 
polymers with lamellar morphology) M = N  a. However, 
each of these treatments results in extensive chain folding 
and adjacent reentry, as we shall see. 

The use of an average N a needs to be examined. Experi- 
ments span a spectrum of possibilities. For diblock copoly- 
mer, with one part crystalline and the other amorphous 
(amphiphilic copolymers), N a is the actual molecular weight 
of the amorphous portion. Also, we know that the incom- 

where M is the number of stems in each of the two direc- 
tions parallel to the lamella and Vis expressed in units of 
the volume of a segment. The number of segments, n, in 
this volume is given by: 

n = M2Na (2) 

so that the density p of the amorphous region is given by: 

/2 

P = V = gla/2 (3) 

which is much greater than 1. This startling result deserves 
further discussion. 

The first point is that such high density cannot be sus- 
tained by the crystal. The amorphous region would simply 
expand laterally and pull the crystalline regions apart. Thus, 
the models depicted in Figure 1 can have no reality and can- 
not be used as models of a semicrystalline polymer. 

The second point is that one can alleviate the packing 
difficulty by postulating that only a fraction, f,  of polymer 
chain stems continue into the amorphous region. The re- 

) 

) 

) c 
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Figure 2 By allowing a substantial number of tight folds, the den- 
sity of the amorphous region can be lowered to a reasonable value 
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patibility of the two halves forces (for proper molecular 
weight) a lamellar morphology. Thus, the requirements of 
the model are satisfied exactly for block copolymers. The 
molecular weight N a is known and the lamellar thickness M 
exists. See below for a discussion of this system. However, 
one may also have a homopolymer of lamellar morphology. 
In this case, N a is not the molecular weight of the homo- 
polymer but a smaller number. Also, it is an average value. 
The amorphous portions of the chains have a wide distribu- 
tion of length. The question of how the amorphous regions 
are filled by these chain portions is asked and partially 
answered below also. 

The presence of a surface modifies the concept of a 
'random walk polymer'. Fortunately, the problem of the 
isolated polymer near a surface has received a recent and 
extensive examination so that we now have much informa- 
tion to draw on. The dimensions of the molecules and, 
therefore, the characteristics of the random walk, are in- 
fluenced by the presence of the surface. Also the surface 
forces us to classify the chains according to whether they 
are (1) cilia, (2) bridges, (3) loops or (4) free chains. Each 
of these kinds of chains has different statistics 2. The 
amount of  chain folding will depend on their relative 
abundance. 

The effect of the chemical structure of the chains must 
be considered also. Chemical structure determines the 
statistical length of the random walk in free space. We shall 
assume that the presence of the surface does not alter the 
statistical length. We know that this is only an approxima- 
tion. The problem of a semiflexible chain near a surface is 
solved 3 and the chain dimensions involve both surface ener- 
getics and stiffness in a complicated way. 

We are not dealing with isolated chains, but with chains 
competing with each other for space at the same time as 
they are influenced by the surface. What we need is an 
analogue of the Flory-Huggins lattice model but near a 
surface, which can accommodate various amounts of cilia, 
bridges, loops and free chains. 

Thus, the problem of determining the extent of chain 
folding is both complex and difficult. Therefore, we pro- 
ceed by establishing an exact result relating the amount of 
chain folding to the properties of the amorphous region. 
Next we establish some exact lower bounds on the amount 
of chain folding. 

We then proceed to three models of the amorphous 
lamellae: a simple entropy argument that the amorphous 
lamellar thickness varies as Nla/2; a treatment of amphiphilic 
diblock copolymers which gives lamellar thickness varying 
as N2/3; and a demonstration that the amorphous portions 
of a homopolymer of lamellar morphology can be under- 
stood in terms of the Classical Gambler's Ruin Problem. 

Simple space filling arguments show that a substantial 
amount o f  chain folding exists. The degree of crystallinity, 
Xc, of a polycrystalline polyethylene of lamellar morphology 
can be written in two ways: 

pcl~ 
Xc - (6) 

Pclc + Pala 

rc 
xc - (7) 

ra+rc 

where r a is the average number of CH 2 units in a run of 
amorphous segments, r c is the average number of CH 2 units 

in a run of crystalline segments, and I a and l c are lamellar 
thicknesses in A. Equation 6 simply defines a mole fraction 
crystallinity. Equation (7) is a consequence for large mole- 
cular weight; we simply follow each molecule along its con- 
tour as it traverses through crystalline and amorphous por- 
tions. Equations (6) and (7) give: 

rc la Pc 
- ( 8 )  

lc ra Pa 

which is a unique relation between the properties of the 
crystalline and amorphous regions. 1.27 rc/l c is the ratio 
of the number of CH 2 units in a crystalline run of segments 
to the number of CH 2 units in a stem. It is also the same 
as the number of stems comprising a run which we call 
cluster size. The relation between cluster size and the frac- 
tion f of stems leaving and entering the amorphous region 
is given by: 

f = 1.27 r~ - Pc 

Equations (8) and (9) show that the amount of chain fold- 
ing within the crystalline lamella is related uniquely to the 
average length of a run in the amorphous region. If intui- 
tively, the ratio la/1.27 r a is thought to be small, then of 
logical necessity, f is also, intuitively, small (see Eq. 9). 

A computer simulation by Yoon and Flory 4 throws in- 
teresting light on the discussion. For polyethylene crystals 
of lamellar morphology, a polymer chain is allowed to walk 
randomly across a lamellar spacing of 90 A, and it is found 
that it takes, on average, 130 + 20 CH 2 units to find a first 
contact with the amorphous-crystal interface. A perfect 
trans-trans crossing of the lamella would consume 71 CH 2 
units. It is plain that if every crystal stem were connected 
to an amorphous section of an average length of 130 CH2 
units, the density of the amorphous region would be 
130/71 = 1.83. If  we wish the amorphous density to be 
0.85, then only a fraction of the crystal stems can be con- 
nected to the amorphous segments, otherwise there would 
be an overfilling of the amorphous region. Using Pa/P = 0.85, 
we obtain f =  0.463 from equation (9), i.e. less than 1/2 of 
the time a stem continues into the amorphous region. The 
other 0.537 of the time, it must fold back into the crystal. 
There is a suggestion that the value of f calculated here is an 
upper bound because, as soon as the random walk touches a 
surface, it is forced by the rules of Yoon and Flory to be- 
come a stem. However, in reality, we must allow the ran- 
dom walk to reflect sometimes off the surface. If it always 
reflects off, the value of f would be zero. If  it never reflects 
off, the value of f is 0.463. The Yoon-Flory model will 
be discussed further below. 

The model of this section is a two-phase model with the 
folds being tight adjacent re-entry folds and part of the 
crystal phase. It is to be emphasized that the amorphous 
region consists of both bridges and loops. These loops 
which are far more numerous than bridges (see equation 
(34)) are not counted as adjacent re-entry folds. 

Free chains, cilia and solvent in the amorphous region 
all have the effect of reducing f i n  equation (9). To deter- 
mine the effect due to free chains and solvent, we simply 
use for Pa the density due to loops and bridges only. For 
cilia, we imagine that only half of the segments in the cilia 
contribute to the amorphous density. 
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Tilt in the crystal stems is accounted for easily by divid- 
ing the right-hand side of equation (9) by cos $, where ~ is 
the angle of tilt. 

Rigorous bounds on the amount o f  folding. In a pre- 
vious paper, Flory used general arguments to recognize that 
1/2 was a lower bound to the amount of chain folding in 
systems of lamellar morphologies s. We wish to show that 
this lower bound must be raised whenever loops, cilia and 
free chains are considered and that the 1/2 lower bound 
applies only to lamellar systems in which the amorphous 
region consists entirely of bridges (tie chains). Consider a 
bond with equal a priori probability, P0, of lying in any 
direction (Figure 3a): 

Pa/Pc. The result does not depend on how the cilia are 
apportioned into the two crystalline boundaries. 

One could define an isotropic distribution which is some 
linear combination of equations (10) and (11). T h e f o f  
equation (13) is an upper bound to any such isotropic dis- 
tribution. If all the chains are free we have 100% chain 
folding. If all the chains (n the amorphous region) are cilia, 
then we have a minimum of 75% chain folding. 

If one imagines that the chains lie on a simple cubic lat- 
tice such that t/3 of the bonds are in each of the the three 
possible orientations and that in the unique orientation (per- 
pendicular to the lamella) the steps are in one direction, 
then the methods leading to equation (13) give: 

1 
P O - - - - ,  Ox<Ox<lr, O~<q~<2n" (10) 

47r 

f <  Vc/6 + Vb/3 + 0 vf(simple cubic lattice, no reversals) 

(14) 

where 0 is the co-latitude, $ the longitude. 
If we now consider only the right half of this distribution 

(Figure 3b), we have the probability of always stepping to 
the right: 

Pl = - -  0<~0 ~<-  
2z- 2 

P l = 0  - < 0  <rr  
2 

O < ~ < 2 r r  (11) 

Optically, both the distribution in equations (10) and (11) 
are isotropic so that one cannot distinguish between them 
on the basis of optical measurements. Flory used this latter 
distribution (equation (11)) to estimate the number of chain 
folds s. The average length of a step to the right, d, is the 
projection of the bond of length I onto the unique direction: 

d = l  pl  cos0 d~  p l d I 2 = l / 2  (12) 

0 

This result would lead to a density of 2 if every chain were 
to continue from one crystal to the other. To keep the 
density normal, 1/2 of the chains are imagined to fold back 
before they enter the amorphous region. 1/2 is a lower 
bound because, in reality, chains do not always press for- 
ward, but double back, due to their random walk character. 
In fact, if the chains were allowed to double back freely, we 
would expect the distribution of equation (10). A bridge 
with the distribution of equation (10) would consist of 
more segments than a bridge with the distribution of equa- 
tion (11). Therefore, we conclude that, for an amorphous 
region consisting of bridges only, f < 1 [2. 

If we have a volume fraction, vf, of free chains (chains 
unattached to any crystal), a fraction, Vb, of chains that 
are bridges, and a fraction, Vc, of cilia, all of the same con- 
tour length, then the fraction of crystal stems that continue 
from the crystal into the amorphous interface region,f, is: 

f =  Vc/4 + Vb/2 + 0 vf (continuum, no reversals) (13) 

where v c + v b + vf= 1. All the chains are imagined to start 
at one interface and end at the other. The density is uni- 
form throughout the amorphous region and is taken to be 
the same as the crystal density. To allow for different den- 
sities, the right-hand side of equation (12) is multiplied by 

The above results are predicted by an isotropic distribution 
of bonds. One can avoid these conclusions by assuming that 
the distribution is anisotropic (i.e. the bonds orient preferen- 
tially normal to the lamella). 

Equilibrium calculations. Improved evaluation off .  
We imagine a simple cubic lattice between two plates of 

a 

b 

Figure 3 Both Fig. 3a and one-half of  Fig. 3b represent an opti- 
cally isotropic distr ibut ion of  bonds. However, Fig. 3b results in a 
dr i f t ,  in one direct ion, of  the polymer chain imagined to be com- 
posed of such bonds. Fig. 3b enables one to establish a (weak) 
lower bound to the amount of chain folding 
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separation M. We have ~7c chains each of length N a within 
an area A. These chains begin at one surface and end at the 
other; otherwise they are free. We imagine the lattice to be 
completely full of polymer. We have: 

MA M 
f=  - (15) 

NaA Na 

f -  r/c (16) 
A 

Equation (16) definesfas the fraction of stems that are con- 
nected covalently to a random coil chain. Equation (15) 
states that the total number of CH 2 units fNa A equals the 
total number of lattice sites MA. If every stem was the 
source of a chain, we would have NaA CH 2 units; but this 
would overfill the space. Therefore, we begin with a frac- 
tion, f, of the stems as sources of chains. For each step of 
a chain which does not begin on the surface, we have a fac- 
tor, Z, which is the coordination number of the lattice. For 
each step of a chain which begins on the surface, we have a 
factor Z ' .  For the simple cubic lattice Z = 6, Z '  = 5. The 
total number of arrangements of  the 7/c chains is: 

QCT = (Z')2A z(M- 2)A z - ( M -  2)~c(Z')- 2~c (17) 

The last two terms of equation (17) occur because there are 
M steps within each chain which are forced in one direction 
only. From: 

Qcr = Qc nc (18) 

we obtain: 

Qc = (Z') 2A /nc- 2 z(M- 2)A/nc-(M-2) 

= (Z')2(1/f-1)z(M-2)(1//-1) (19) 

Whenf  = 1, we have correct normalization. If we now 
maximize equation (19) subject to equations (15) and (16) 
we obtain: 

N a in Z 
M 2 21n(Z/Z ' )  

(20) 

which shows the thickness to vary as the square root of 
molecular weight. Or, equivalently: 

f=  (21n(Z/Z')  t 1/2Nal/2 
(21) 

which for the simple cubic lattice gives: 

f= 0.45 Nal/2 (22) 

The above treatment assumes the statistical length to be one 
monomer unit. A simple analysis shows that, more generally, 
we have: 

f=  (21n(Z/Z')i~-~ ] 1/2C1/2Nal/2 (23) 

where C n is defined and tabulated in Table 1 of Flory's 
book 6. 

We list here certain considerations not discussed in the 
derivation of equation (23). 

(1) For M = 1, we should have a dependence on Z '  but 
not on Z. Equation (19) shows this happens fo rM= 2 
rather than M = l. This is probably not serious. 
(2) The treatment ignored packing and orientation effects. 
The isotropic packing effect (attrition due to competition 
for space) is not dependent on M and, therefore, has no 
effect on the minimization procedure. The change in pack- 
ing due to orientation has been shown 7 to be of second 
order in M/N a and does not affect the results. 
(3) The treatment is for bridges only. 
(4) The treatment ignores the surface energetics and the 
fold energies of the crystal. This affects the value of the 
coefficient in equation (21) but not the molecular weight 
dependence. The coefficient is calculated by published 
methods 7. 
(5) The calculation is appropriate to diblock copolyrners 
rather than to a homopolymer. We do not at this stage 
know what N a is for a homopolymer (but see further on). 

Other approximations to the evaluation o f  f. Those 
treatments of block copolymers which provide an estimate 
of the lamellar (block) thickness M, also by virtue of equa- 
tion (15), provide an estimate off .  If  both the blocks are 
amorphous, this estimate gives the fraction of the interface 
area between the two blocks that is covered by covalent links 
between the two blocks. For amphiphilic diblock copoly- 
mers, it is also the fraction of crystalline stems that project 
(are covalently connected) into the amorphous layer, (1 - f )  
being the amount of folding. See below for quantitative 
estimates o f f  derived from experiment. 

A treatment of  amphiphilic block copolymers results in 
the following formulae for lamellar thicknessT: 

Ar2/3 
l a - pla/3 (24) 

ArcP2a/3 (25) 
l c - pcrl/3 

where A is a constant, containing energetics of the interface 
region. We mention these equations because amorphous 
thickness varies as r2J3.rather than rla/2. Hashimoto et al. 8 
have shown experimentally that the 2/3 value is approxi- 
mately correct and is consistent with the theories of Hel- 
land 9 and Meijer 1° as well as the above theory 7. The depen- 
dence of f on N a is: 

f = Nal/3 (26) 

which is a slower variation than that of equation (23). 
Let us therefore consider the problem of bulk polymer 

near a surface more carefully. Specifically, we consider a 
bulk polymer consisting of free chains of length N a between 
parallel plates. We shall assume that the attraction of the 
molecules for each other is so strong that all holes are 
squeezed out, with a resulting constant density across the 
material. Constant density is needed for the arguments 
which follow. The free energy is given by F = U - TS. 
U is calculated to be: 

U = 2Ao s (27) 

where o s is the surface energy. 
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To calculate S, we consider one molecule near the sur- 
face. When a segment of this molecule leaves the surface, 
there is no net energy change for the system since another 
segment from one of the polymers in the system will have 
taken its place. This is true, no matter what the value of 
o s is. Thus, the energetics of the surface for the freely- 
jointed polymer will have no effect on the shape of the 
molecule, no matter what its character and strength. This 
means that S is dependent only on the plate separation, M, 
the properties of the lattice, Z, Z ' ,  and N a. It is dependent 
on temperature only through M. 

To evaluate S, we modify the Flory-Huggins procedure. 
There are three distinct parts to the Flory-Huggins 
calculation. 

(1) Location of the centre of mass of each molecule (or 
equivalently, location of the initial segment of each 
molecule). 
(2) The calculation of the number of configurations of 
each molecule given the centre of mass. 
(3) The competition for space. 

The competition for space is treated here in the same way 
as for a bulk polymer without a surface. Because this third 
factor (sometimes called the attrition term) is independent 
of M, it can be ignored in any calculation of M. In the 
paper on block copolymers, the effect of bond orientation 
on the third factor is shown to be small 7. 

Let us now calculate the contribution from factors (1) 
and (2). For the bulk polymer without the surface problem, 
we have for the centre of mass contribution of the r/c mole- 
cules of length N a ( N  = 7leNa): 

SCMb 
"qc r/c 

/=0 0 

= Tic lnO?cNa) - rio (28) 

Compare this with allowing each of the r/c molecules to 
have N sites as the possible location of the first segment. 
For this case, we have S C M b / k  = rlc lnOTcNa) ,  which differs 
from equation (28) in the term -r/c. We now make the 
observation that the entropy due to effects (1) and (2) is 
r/c times the entropy of one molecule -rlc: 

S C T  = ~ c S c  - 71c (29) 

where S C T  does not include the attrition term. S¢ includes 
both the location of its centre of mass and its number of 
configurations for each centre of mass. The use of equation 
(29) gives the Flory-Huggins result. We now make the 
assumption that equation (29) is valid also for a bulk poly- 
mer near a surface. For molecules near a surface, the local- 
ization entropy and configurational entropy for each mole- 
cule do not separate. 

The calculation of the configurational entropy of a bulk 
polymer between two plates has now been reduced to that 
of calculating the entropy of one molecule between two 
plates; but this is done easily by the method of DiMarzio 
and Rubin 11. The prescription is straightforward, although 
the numerical computation may be lengthy. There is only 
one parameter of the isolated polymer between two plates, 
i.e. the energy of attraction of the surface for the polymer. 
To determine it, we first observe that, over a long period of 

time, a given molecule will visit each place in the region be- 
tween plates with equal probability; that is to say, the t ime-  
averaged segment density due to one molecule is a constant 
since the overall density is a constant. From the ergodic 
theorem, we know that the ensemble average density is also 
a constant. Therefore, we choose a value of surface energy 
for the calculation of the entropy of an isolated chain which 
results in constant segment density. However, it is known 
that this is the critical energy, or equivalently, the boun- 
dary conditions for constant density are the reflecting boun- 
dary conditions 11. 

Another way ~2 of arriving at this choice of boundary 
condition is to replace the effect of all of the other mole- 
cules on the molecule of interest by a potential energy 
F(Z). We then ask what F(Z) must be to result in constant 
segment density for the polymer chain. The answer is 
F(Z) = 0 between the plates and F(Z) = ec at the surfaces. 
Thus, we again arrive at the reflecting boundary condition 
forS c. 

Recapitulating, we have: 

F = U - T S  = 2 A  o s - T71cSc + T71c (30) 

where S c is the configurational entropy of one chain of 
length N a between two plates of separation M. The value of 
M is obtained by minimizing F with respect to M. The cal- 
culation of S c is performed by the method of DiMarzio and 
Rubin 1~ at the critical energy, ec.  This precise prescription 
when implemented should determine the power law forf. 

The above prescription cannot be extended to include 
bridges, loops and cilia since these do not give constant 
density for the reflecting boundary condition 13. The gene- 
ralized problem thus remains unsolved. However, inspec- 
tion of Figure  2 of ref. 11 suggests an approximate proce- 
dure in the general case. One observes that the entropy is 
rather insensitive to boundary conditions. It goes through 
a shallow maximum at the absorbing boundary condition 
(0 = 0) so that the entropy for the reflecting boundary con- 
dition (0 = 0.693) and intermediate points is not much 
different from the values appropriate to the absorbing 
boundary. Thus, the free energy which we write symboli- 
cally as: 

4 

2 .40  s - T ~ 11ciSci(Oi) (31) F = 

igl 

where i enumerates bridges, loops, cilia, and free chains will 
depend on Oi only quadratically. Se i  indicates entropy and 
may include a small negative constant as in equation (30). 

10 9 Thus, it seems that the treatments of Meier and Helfand 
which seem so different (because of the use of the absorb- 
ing boundary condition by Meier and the reflecting boun- 
dary condition by Helfand) do not in fact give much diffe- 
rent results. Meier's treatment minimizes free energy but 
does not take proper account of the density. Helfand's 
treatment takes better account of density contraints 
but does not minimize free energy. A treatment which 
minimizes the free energy (maximizes the entropy) with 
respect to Oi, and subject to the constraint of constant den- 
sity, is envisaged. 

The method of Scheutjens and Fleer 14 is more general 
than the above in that it allows for variation in segment 
density. On the other hand, it is more difficult to imple- 
ment. 
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All of  the above considerations are useful for block co- 
polymers where N a is well defined, but they are less so for 
homopolymers. In the next section, we will use the methods 
of  the Gambler's Ruin Problem of  probability theory to 
gain insight into the homopolymer problem. 

The statistics o f  the polymer chain portions (runs) resid- 
ing in the amorphous regions of  semi-crystalline homopoly- 
mers oflamellar morphology. The Yoon and Flory model 4 
discussed above is equivalent to the Gambler's Ruin Problem 
of classical probability theory ~s. In turn, this latter problem 
is equivalent to the problem of a random walk on a line seg- 
ment with absorbing boundary conditions on the ends. One 
starts a distance z from the one end (the gambler begins 
with z dollars) and steps up or down (wins and losses in 
units o f  a dollar) until one touches the bot tom surface (he 
loses all his money) or the top surface (he wins an amount 
M). Let Uz, n denote the probability that the process ends 
with the nth step at the barrier o (gambler's ruin at the nth 
trial). Let: 

qz = E Uz,n (32) 

n 

be the probability of  a gambler's ultimate ruin and (1 - qz) 
the probability of  winning a dollars. Then for one dimen- 
sion we have: 

z 
qz = 1 - - -  (33) 

M 

which reproduces equation (2.5) of  Ch. XIV of Feller's 
book Is. The case of  a random walk on a simple cubic lattice 
gives a result identical to equation (33). Thus, if we start 
one step above the surface (with a stake of  one dollar), z = l, 
we have a probability of  loop formation of: 

M - 1  
= - (34) Ploop ql M 

and a probability of bridge formation of: 

1 
= = - -  (35) Pbridge 1 -- q 1 M 

The expected duration of  a game D z is: 

Dz = z(M - z) (one dimension) (36) 

Dz = 3 z ( M -  z) (simple cubic lattice) (37) 

Equation (36) reproduces equation (3.5) of  Ch. XIV of 
Feller Is while equation (37) is obtained as a simple exercise 
from the same methods used by Feller to derive equation 
(36). For z = 1, we obtain an expression for the segment 
density in the amorphous regions by using the same argu- 
ment which derived equation (3): 

D z 3 ( M -  1) 
p - - ~ 3 (38) 

M M 

Thus, if one assumes unit density in the amorphous region, 
f =  1/3. This result should be compared to equation (22) 
which applies to chains of  fixed length in the amorphous 

region. The results of  Yoon and Flory quoted in the body 
of  the text are equivalent to a biased gambler's ruin problem 
on a tetrahedral lattice, and as we saw, it led to a density of  
p = 2 and anfva lue  of  1/2. The above two estimates o f f  
do not count any of the runs (loops) as adjacent re-entry 
loops, and since some undoubtedly exist, the value o f f  cal- 
culated here is an upper bound. 

Notice that D z for z = 1 is linear in M, rather than quad- 
ratic. This feature results in a density, p, which is indepen- 
dent of statistical length. Suppose we divide the M units 
into M/c units of  length c each (this corresponds to our 
gambler betting M/c dollars each time rather than just 1). 
Then the duration of  the game is: 

D 1 = 3 - 1 m - -  (39) 
c 

but the total number of dollars wagered is cD 1 and this 
number, which corresponds to the number of  CH2 units, 
is independent of  c (the statistical length). 

Another interesting feature of  the equations is that a 
large fraction of  the chains are loops rather than bridges, 
as equations (34) and (35) show. These equations are, 
however, sensitive to the choice of  statistical length and 
M is to be replaced by M/c in both equations (34) and (35). 
It is now obvious that the large literature on the gambler's 
ruin problem can be used profitably to discuss the problem 
of  the amorphous region of  a polycrystalline system of  
lamellar morphology. 

We must now ask the difficult question as to what the 
guarantee is that the Yoon and Flory scheme does give the 
proper statistics of  chain segment occupation in the amor- 
phous phase. The remainder of  this section is intended to 
show that the Yoon and Flory statistics are correct for bulk 
polymers. 

Let us first discuss the problem of an isolated polymer 
molecule of  large molecular weight between two plates. 
This problem was solved both by a canonical and a grand 
canonical formalism (generating function method~l). In 
general, the configuration statistics of  a loop or bridge are 
dependent on the other loops and bridges in the same chain. 
However, a loop or bridge can be treated independently of  
the rest of  the chain if its statistical weight is multiplied by 
exp(-Ln)  where X = -/a/g T. /a is the chemical potential. 
This is the essential content of  the generating function 
method. Knowledge of  the chemical potential allows us to 
treat loops and bridges as independent entities and ignore 
the fact that they are connected to other loops, bridges and 
trains TM. A chain which starts at location 1, and ends up 
at 0 or a, has a generating function of  the formlS: 

u(x) 

o o  

= E ul'nexp(-~kn)+ E Ua-l'nexp(--Xn) 
n = 0  n = 0  

= U 1 (X) + U a_ I(X) (40) 

where the first term on the right-hand side corresponds to 
the gambler's ruin (arrival at the lower surface which is 
equivalent to loop formation) and the second term corres- 
ponds to the gambler's winning (arrived at the upper surface 
which is equivalent to bridge formation). Equation (40) 
results from a simple application of  equation (4.4) Ch. XIV 
of Feller is. Thus, one can consider loops and bridges as de- 
coupled from the rest of  the system (decoupled from its 
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Figure 4 A regular array of tight loops, as in Fig. 4a, is a possible situation, but if each loop is made loose as indicated in Fig. 4b, the resulting 
density of the amorphous region would become too high. One can have loose loops only if one has simultaneously tight loops as indicated in 
Fig. 4c 

environment) provided only that one adds a factor exp(-Xn) 
to the statistical weight. The above considerations extend 
the Yoon and Flory procedure to dilute solutions. We 
simply multiply the statistical weight of each configuration 
by the activity (exp(-Xn)). 

The Yoon and Flory procedure in the bulk is equivalent 
to the use of X = 0 in equation (40). We first show that if 
the form of equation (40) is hypothesized, then X = 0 for 
the bulk. Then we will discuss the hypothesis. 

To determine X, we use the condition that the average 
density of segments at each level in the amorphous region 
is constant: 

p(z, X) = c 1 (41) 

Whether some other condition might be used to determine 
X is a moot point, since only one condition is necessary and 
constant density (equation (41)) suffices. We now observe 
that the random walk with reflecting barriers results in a 
constant density. But the random walk with reflecting 
barriers is nothing more than a succession of random walks 
with adsorbing boundaries. Each time the walk is terminated, 
one renews the walk by beginning a new walk, one step out 
from that adsorbing boundary which last adsorbed the walk. 
The average number of times level z is visited in each walk 
is a constant, independent of z, because the final density is 
a constant independent ofz. The renewal procedure des- 
cribed above is exactly what Yoon and Flory did in their 
Monte Carlo simulation. They also obtained constant 
density. 

Another way to show that constant density results from 
the unbiased gambler's ruin problem is to work in the con- 
tinuum limit for which: 

av a2v 
- -  = D - -  ( 4 2 )  
at Ox 2 

with boundary conditions: 

v(O, t) = v(M,t) = 0 (43) 

and initial conditions: 

6 ( z - l )  6 ( z - ( a - I ) )  
v(z, 0) = - -  + (44) 

2 2 

The initial condition corresponds to a gambler starting 
at z = 1 and z = M - 1 with equal probability, the game end- 

ing when he wins or loses. Integration of equation (42) 
from t = 0 to t = oo gives: 

o o  

d2 f d2p(z) (45) 
v(z, oo) _ v(z, O) = D - ~  v(z, t)dt = D dz 2 

0 

p(z) = Az, O <~ z <~ 1 

p(z) = A, 1 < z ~< a - 1 (46) 

p ( z )  = A ( a  - z ) ,  a - 1 < z ~< a 

The absorption boundary condition results in v(z, oo) = 0 
while the boundary condition, equation (43), the initial 
condition, equation (44), and the continuity of p(z) results 
in equation (46). Notice that p(z) is symmetrical about the 
midpoint of the line segment. Thus, we again arrive at the 
result that the gambler's ruin problem, i.e. equation (40) 
with X = 0, results in constant density (except for the end 
points). 

The final question is whether the hypothesis that the 
environment of a given loop or train can be accounted for 
by a factor exp(-Xn) is correct. This hypothesis cannot be 
proven, unless one were able to solve the problem of pack- 
ing molecules exactly. We are far from solving that problem. 
However, it seems that, within the Flory-Huggins lattice 
approximation, the hypothesis is correct. The only effect 
of the environment on the loop or bridge in question is 
that an attrition factor exists (V 0 in the Flory approxima- 
tion, S O in the Huggins approximation) per segment. This 
means that the effect of the other chains can be accounted 
for by a factor (V~ orS~)  which simply scales X. 

Observation II. Adjacent re-entry loops are very small and 
tight 

Let us examine a surface consisting entirely of loops, to 
see if it is possible to have an amorphous-lamellar-crystal- 
line complex with the amorphous part arising solely from a 
looseness in the loops. Figure 4a represents a structure with 
regular folding. There are a substantial number of publica- 
tions that have argued that regular (tight) chain folding is 
sterically possible t6. Some have suggested that staggering 
of the folds makes the packing easier 17. Let us now try to 
accommodate an amorphous layer of folds by allowing dis- 
order in the loops between planes A and B of Figure 4b. 
The same arguments used under Observation I apply here. 
The density of the amorphous region would become much 
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Figure 5 Two models of a polymer chain attaching to a polymer 
crystal at its periphery. See text  for  details 

greater than that of the crystal. The only way to avoid this 
difficulty is to force some of the loops to be tight just be- 
low plane A (Figure 4c). One can have loose loops only if 
one also has tight loops. 

Thus, there are only two possibilities; either one has tight 
loops only or one has a mixture of loose and tight loops. 
One never can have only loose loops. 

Let us imagine each loop starting from one surface, stepp- 
ing out to the other surface and then turning around and 
stepping back to the original surface. For stepping to the 
right, equation t 1 is obeyed; for stepping to the left, an 
exactly analogous equation corresponding to the left hemis- 
phere of Figure 3b is obeyed. It is easy to prove that, in 
such a case, only 1/4 of the crystal chain stems can be con- 
nected to loops and that (for large molecular weight) at 
least 3/4 must fold back. The amount of  chain folding 
must be larger than 3/4 if the fundamental bond probility 
is some combination of that of equations (10) and (11). 
The proof follows the observation that such loops can be 
viewed as pairs of bridges. 

The difficult problem of treating completely the crystal- 
line-amorphous complex, with loops comprising the 
amorphous part and crystal stems the crystal part, has been 
attempted by Zachmann and Peterlin la and by Roe 19. The 
treatment by Roe does not take into account the interac- 
tion between polymer chains and therefore, a fortiori, the 
competition of loops for the same space. In fact, if one 
were to assume, as Roe does, that the configurations of a 
loop are independent of the proximity of  other loops, then 
the density of segments in the amorphous region near the 
crystal would greatly exceed the crystal density. To see 
this, one uses the distribution function for segment density 
in loops obtained previously 2°, and multiplies it by the 
number of loops per unit surface area. The packing diffi- 

culties operative in our model are, therefore, also operative 
in the Roe model, and his estimates of loop sizes which are 
already small numbers must be considered to be upper 
bounds. The calculations of Zachmann and Peterlin must 
also be considered to give (weaker) upper bounds 21. These 
models would undoubtedly serve as useful points of depar- 
ture onto which we add the packing effects were we to 
attempt a quantitative theory of loop formation and 
distribution 22. 

The above arguments deal with loops in the bulk of the 
crystal-amorphous complex (away from the edges). We 
will now show that at the growing edge of a crystal, loops 
are very small and tight. It is observed universally that 
polymer crystals grow by accretion to their perimeters 23. 
Because of this, it is necessary to have sequential deposition 
of molecules for crystallization from dilute solution pro- 
vided only that the crystal grows slowly. It violates no 
known fact to presume it to be true also for crystallization 
from the bulk. At the very least, in the limit of low under- 
cooling the growth rate can be made so small that one must 
have sequential addition. The fact of sequential deposition 
allows us to use the models of isolated molecules at the 
edge of the growing crystal as displayed in Figures 5a and 
5b. The model of Figure 5a has been discussed previously 24 
and that of Figure 5b is that of Roe 19. In Figure 5a, the 
last stem (right-hand one) is attaching and detaching (in this 
model stems attach sequentially as well as molecules) and 
we ask what the expected loop size is. In Figure 5b, we 
allow all loops to change their sizes by pulling on each 
crystal stem and we ask what the average loop size is. An 
argument used previously 24 gives: 

(/> ~- 3 (47) 

for the model of Figure 5a, where / is the number of statis- 
tical segments in a loop. This argument assumed Gaussian 
statistics and no energetics within the loop. For the entropy 
of the loop, it used the calculation of the number of con- 
figurations appropriate to a polymer near a s u r f a c e  2'19'2° 

The value (j) ~ 3 means the loops are so tight that the 
Gaussian approximation has been pushed to its limit and 
energetics of tight chain folds take over. It justifies the use 
of tight loops for previously incorporated stems in Figure 5a. 
The kinetic theories of chain folding which postulate a se- 
quential deposition of stems within each molecule and a 
sequential deposition of molecules within each crystal are 
made credible by the fact that the loop lengths are small. 
Were the loop lengths to be large, one could imaging a large 
back pressure developing which would prevent further 
deposition. 

The model of Figure 5a assumes no snaking around 
(reptation) once the crystal is formed. The model Figure 5b 
which allows reptation has been treated by Roe. The results 
of Roe are probably more applicable to the molecule on the 
crystal edge than to one in the crystal centre, since the inter- 
ference between loops which was neglected by Roe is less 
extensive for loops on the edge of the crystal. Even so, the 
results of Roe show small loop size ((j) ~- 7) which again 
is to be viewed as an upper bound. In summary, the calcu- 
lated loop sizes are small, even when interferences between 
loops are not taken into account; it is the alteration of ran- 
dom walk statistics in the presence of the surface that results 
in the small loop sizes. Details are given in refs. 19 and 24. 
Ref. 11 contains many references to the random walk prob- 
lem in the presence of surfaces. 
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Figure 6 The four  kinds of loops; adjacent-tight, non-adjacent- 
tight, adjacent-loose, and non-adjacent-loose 

Observation III. The amount of  non-adjacent re-entry & 
small 

At this juncture, it is useful to classify loops as to whether 
they are loose or tight, adjacent or non-adjacent. In Figure 
6, we display schematically each of the four possibilities. In 
the previous sections, we showed that the assumption of 
adjacent re-entry loops implies that a substantial fraction 
of them are tight. Here, we shall show that any combina- 
tion of adjacent-loose,  non-adjacent-loose,  and non-adja- 
cent - t ight  loops implies a substantial fraction of ad jacen t -  
tight loops. 

First, let us show that some t ight-adjacent  loops are 
necessary. For an amorphous (or more properly, non-crystal- 
line) region k units thick, we obtain by arguments similar 
to those leading to equation (3): 

n ((x)+k)M 2 (x)+k 
P V km 2 k (48) 

which applies to the model of  Figure 4b where ad jacen t -  
loose, non-adjacent-loose and non-adjacent-t ight  loops 
from both the lower and upper crystalline lamellae fill the 
region between planes A and B. Here (x) is the average dis- 
tance in numbers of  segments between the stems which ter- 
minate a given loop (see Figure 7). The value k in the nume- 
rator arises from the presumption that, on average, the loops 
traverse the amorphous layer at the level k/2. The average 
number of  segments in a loop is thus (x) + k. Since the den- 
sity of the non-crystalline region is experimentally less than 
1, and since equation (48) gives P > 1, we always have some 
t ight-adjacent  folds. In the derivation, we used the short- 
est possible distance (x) between stems (t ight-non-adjacent 
folds). The use of  loose-non-adjacent  folds would have re- 
suited in an aven larger P, and would have implied even more 
t ight-adjacent  ren-entry loops. 

However, it must be stressed that equation (48) was de- 
rived for the case where loops came from both surfaces into 
the amorphous region, and for the case where the average 
number of  segments per loop is (x) + k. If one of the sur- 
faces is a non-polymer barrier (as for example in Figure 4c), 
then the estimate of p from equation (48) is halved and the 
bound becomes too weak to be of  any value. Equation (48) 
is not useful for crystallization from dilute solution, since 
all loops forming the interface came from only one surface. 
A separate paper discussing the nature of  the interface for 
such surfaces is in preparation. 

Let us now estimate the expected amount of  non-adjacent 
re-entry by calculation of  (x). Our model is a varient of  that 
of Figure 5a, in which we allow the last stem to settle at any 
location x (see Figure 7). We will assume that the energetics 
are the same for each placement of  the stems. In dilute solu- 
tions, this is a poor assumption because the adjacent posi- 
tion (x = 1) is energetically favoured. Our estimate of  (x) 
in this case will be larger than if we had taken energetics 
into account. However, in the bulk, we can imagine that 

each of the intervening, x - 1, positions are occupied by 
other stems of other molecules so that there should be no 
energetic preference. Therefore, we work only with the 
entropic contribution. At first, we imagine that the last 
stem can slap on and off  many times before a new stem is 
added. This will allow us to make an equilibrium calcula- 
tion. It has been suggested that this condition can be re- 
laxed without affecting the results ~.  

The probability distribution for the end-to-end length x 
can be given by2: 

Sll exp(-3x2/2j112) 
w t ~ j~ loops (49) 

where 0 depends on the nature of  the surface near which 
the two end points lie. For no surface, 0 = 3/2, while, for 
the end points lying on a plane surface, 0 = 5/2. In equa- 
tion (49), l is the length of a step and 11 the number of  them 
in a loop; s is the conformational freedom per step. I f  only 
one of  the ends is pinned and the other is free to roam, then 
the corresponding factor for the cilia is: 

Wc ~ sJ2/j2~ cilia (50) 

with/3 = 0 for free space and 1/2 for a cilium on a surface 
and J2 is the length of a cilium. The product of  equations 
(49) and (50) is proportional to the total number of  con- 
figurations consistent with il segments in the loop , j  2 in the 
cilia and a non-adjacency index x. The expected value o f x  
is obtained by: 

f xWIW e djl  dx 
(x) = (51) 

y WtWcdhax 

where we have used the fact t ha t j  =Jl  +J2 is a constant. 
If  we let 0 = 3/2 and/3 = 0 (no surface), we obtain: 

(x) ~ jl/2/ln j (52) 

This square-root dependence corresponds to an intuitive 
appreciation of random walk statistics. However, if we let 
0 = 5/2 and/3 = 1/2 (a plane surface), we obtain: 

<x) ~- t]/2 (53) 

where t 1 is the lower limit of  the integration on Jl and is the 
smallest number of  bonds needed to make an adjacent re- 
entry loop. This result (equation (53)) may seem surprising 

Figure 7 Model on which the calculation of the expected amount 
of non-adjacency, x, is estimated. The x-1 places between the two 
ends of the loop are imagined to be occupied by other stems of 
other molecules 
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to those 11ot familiar with random walk statistics in the pre- 
sence of a surface. The value we obtained for (x) is so small 
that we passed the limit of validity for the Gaussian method. 
Tight-adjacent re-entry loop energetics and other non- 
Gaussian characteristics are expected to take over at this 
stage. One can improve the procedure by (1) using discrete 
methods by adoption of the method of Roe to this problem 
and (2) allowing for the structure of the polymer. We shall 
not do so here because our only purpose is to show that the 
presence o f  a surface strongly favours adjacent re-entry. 

It should be emphasized that Observations II and III have 
their greatest validity for the case of dilute solution crystal- 
lization, because the statistics of polymers near the surface 
that we used are known to be valid for isolated polymer 
molecules. If we focus our attention on a polymer together 
with the solvent around it, we see that a solvent molecule 
forced to move from the vicinity of the surface to the 
interior of the fluid by displacement by the polymer does 
not change its freedom and its contribution to the overall 
entropy. Now consider a polymer molecule which is sur- 
rounded by other polymers (bulk phase). When it approaches 
the surface, it loses freedom, just as if it were by itself. How- 
ever, the other molecules (or pieces of molecules) which are 
displaced gain freedom as they move to the interior of the 
fluid. Thus, the overall effect on total entropy is smaller in 
this case. Thus, the statistics of a polymer molecule im- 
mersed in its own kind are different from one immersed in 
solvent, and equations (52) and (53) should be viewed as 
limiting forms, known to be valid only for dilute solutions. 

EXPERIMENTAL CONFIRMATION OF PREDICTIONS 

The experimental system of a diblock copolymer of poly- 
ethylene oxide and polystyrene allows us to make unam- 
biguous statements about the amounts of randomness of 
the amorphous regions and folding in the crystalline regions. 
It has been studied extensively by Lotz and Kovacs 2s and 
by Lotz, Kovacs, Bassett and Keller 26. (The triblock systems 
with the crystallizable portion in the middle are also useful, 
but experiments on such samples are not extensive). 

In the diblock system, the two components are highly 
incompatible and the polyethylene oxide ends up being 
confined in the crystalline lamellae which alternate with 
lamellae consisting entirely of the amorphous polystyrene 
component. The chemical differences between the amor- 
phous and crystalline regions enable us to make sone defi- 
nite statements about the shape of the chains and the struc- 
ture of the interface. 

Consider the amorphous region first. The thickness of 
the amorphous lamellae ranges from about 20 A to 54 A, 
while the contour length of the polystyrene parts of the 
diblock range from about 208 A to 582 A. This means 
that only about 1/10 of the plane surface area separating 
the two regions is occupied by a molecule traversing the 
two regions (a covalent connection between the two adja- 
cent regions). The result strongly suggests that the poly- 
styrene chains approximate a random walk in the amor- 
phous region. Similarly, the contour length of the poly- 
ethylene oxide portions ranges from about 670 A to 1322 A, 
while the lamellar thicknesses of the crystalline portions 
ranges from about 62 A to 100 A. Again, one calculates 
about 1/10 of the interface area occupied by chains travers- 
ing the two regions. 

For the crystalline region, we have the added experi- 
mental observation that the chains must run (approxi- 

mately) perpendicular to the lamella. Since the chains re- 
main in the lamella, there must be folding (of the order of 
ten stems per molecule) ( f =  1/10). 

Regular adjacent re-entry foMing has not been proved 
experimentally, only folding. To prove adjacent re-entry, 
one would need a more accurate density profile than is 
available presently. Yet, the experiment does rule out the 
switchboard model for this system. 

For these systems, the chain folding lamellar morphology 
is the equilibrium situation. In crystallizable homopolymers, 
chain folding costs energy. Given enough time, the chain 
folds will anneal out of the system resulting in extended 
chain crystallization. However, in amphiphilic copolymer 
systems, this process can proceed only to a certain extent 
because the amorphous portions induce a strain energy 
which tends to pull the crystallizable portions apart. The 
crystalline chain portions tend to become fully extended, 
and, because they are connected covalently to the non- 
crystalline chain portions, they tend to extend the non- 
crystalline chain portions. But, the non-crystalline portions 
seek to be random in shape and the associated entropy force 
tends to pull the crystalline portions apart laterally. Thus, 
the balance between the two effects results in an equilibrium 
lamellar thickness. A prediction of lamellar thicknesses in 
terms of the relevant parameters is being published 7. 

Ther.e will be regular chain folding in diblock copolymers 
whenever the following three conditions are satisfied 
simultaneously. 

(1) There is a segregation of the crystallizable and non- 
crystallizable portions into a lamellar morphology. 
(2) The contour length of the chain portions in each 
phase is longer than the thickness of the lamella. 
(3) The crystallizable chain portions lie perpendicular 
to the lamellae. 
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